
Journal Impact Factor (JIF)™ 2023: 0.2 | 5 Year JIF: 0.2 | Quartile: Q2 | Source: JCR™ 2024 (Clarivate Analytics)  

   
ISSN 0975-2935 | Indexed in the Web of Science Core Collection™ Emerging Sources Citation Index (ESCI) 

 https://doi.org/10.21659/rupkatha.v16n2.04| Volume 16, Number 2, 2024 | Dynamic Impact  

 

Research Article 

 

Detection of English Grammatical Errors and Correction using 

Graph Dual Encoder Decoder with Pyramid Attention Network 
 

Hema M1*  , Kandasamy Sellamuthu2  , Vijayarajeswari R3   

1Department of English, KPR Institute of Engineering and Technology, Coimbatore, India. *Corresponding 

author.  
2Department of CSE, KPR Institute of Engineering and Technology, Arasur, Coimbatore-641407, India.  
3Department of Computer Science and Engineering, Velalar College of Engineering and Technology, India.  

 

Abstract 

In English, grammatical errors pose a significant challenge, prompting the exploration of diverse detection 

and correction methods. Existing approaches, however, often fall short of delivering satisfactory results and 

achieving high accuracy. An innovative solution, the Optimized Graph Dual Encoder Decoder with Pyramid 

Attention (OGDED-PA), is introduced to overcome these limitations. The model utilizes the C4_200M 

synthetic dataset for input data, followed by preprocessing and applying hybrid Squared Root of Term 

Frequency Variants with Mean Semi-absolute Deviation Factors for morphological feature extraction. 

Bidirectional long short-term memory with conditional random field segmentation is employed, and 

OGDED-PA, integrating a dual encoder-decoder architecture and pyramid attention mechanism, is then 

applied. This model aims to enhance accuracy in identifying and correcting grammar, syntax, punctuation, 

and spelling errors by capturing intricate linguistic patterns. The graph-based representation leverages 

Improved Border Collie Optimization (IBCO) to optimize the weight parameter, allowing the model to 

analyze syntactic and semantic relationships and address a broad spectrum of grammatical errors. The 

proposed method is implemented using the Python platform. Compared to existing methods, the proposed 

approach achieves 99.3% accuracy, 98.7% precision and 98.6% F0.5. 
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1. Introduction  

Writing and reading in English poses a significant challenge for non-native English speakers. To 

address this, a Deep Learning (DL) model proposes an open grammar-checking method that 

provides deep analysis to train English grammar. With the widespread use of English (Lin et al., 

2020; Hassan et al., 2022), the expansion of Natural Language Processing (NLP) techniques has 

played a vital part in the advancement of grammar-checking methods (He, 2021). English writing 

reviews encompass a comprehensive examination of content and structural aspects at a higher 

level, along with sentence and spelling correction and error detection (Kharmilah & Narius, 2019; 

Solyman et al., 2023). Common types of grammatical mistakes in English writing include 

preposition errors, article misuse or omission, mismatching singular and plural nouns, and errors 

resulting from subject-verb agreement issues (Lin et al., 2021). Automatic error correction in 

English writing is widely recognized as a highly challenging task (Lee et al., 2021; Zhou & Liu, 

2021). The traditional Machine Learning (ML) approaches are unable to handle the complexities 

of multi-layered and diverse language representations (Wu et al., 2022; Rozovskaya & Roth, 2019). 

The expansion of English writing error correction brings new opportunities, reducing the impact 

of quantity on the challenge of correcting English errors to some extent (Zhou & Quan, 2022; 

Zabolotskikh et al., 2021). Statistical data analysis has been widely explored as a technique for 

grammar checking. With the rapid development of statistical corpus linguistics, ML techniques 

that leverage corpora as the research basis and object have seen significant advancements (Qiu 

& Qu, 2019; Agarwal et al., 2020; Hong et al., 2020). To address these challenges and advance 

automatic English grammar correction, the proposed method plays a vital role. Leveraging the 

advancements in technology, science, and NLP, using processors for automatic error correction in 

English is now more feasible than ever before (Lee, 2020; Chen & Zhang, 2022). In terms of word 

segmentation processing, a Bi-directional Long Short-Term Memory with a Conditional Random 

Field (Bi-LSTM-CRF) approach for English word segmentation has been developed (He et al., 

2024). Experimental findings indicate that this strategy enhances the effectiveness of NLP. Several 

approaches for English grammatical Error Detection and Correction (EDC) have been proposed. 

However, existing methods fall short in providing satisfactory results, resulting in a high error rate 

(Dashtipour et al., 2021; Hu et al., 2022). To overcome these issues and address the problem at 

hand, this research work aims to offer essential solutions and insights.  In contrast to conventional 

encoders, the proposed work introduces a Graph Dual Encoder Decoder with Pyramid Attention 

(GDED-PA) to independently capture information from the source and context sentences. 

The following lists the primary contribution of the research work. 

• The OGDED-PA technology aids English learners by providing an accessible solution for 

improving grammar proficiency. 

• The Bi-LSTM-CRF segmentation process automatically identifies and corrects various 

grammar errors, requiring less training time than large transformer models. 

• The decoder utilizes a graph structure for efficient encoder output integration, 

incorporates a pyramid attention mechanism, and introduces IBCO for optimized weight 

parameters of GDED-PA, enhancing word prediction through dynamic extraction 

techniques. 
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IBCO develops a Border Collie-inspired metaheuristic algorithm for efficient exploration, balancing 

exploration/exploitation, converging to high-quality solutions, and adapting to diverse 

optimization problems. 

The remainder part of the research is explained in below section. Section 2 explains the review of 

various recent technologies; The proposed methodology is demonstrated in section 3; Section 4 

discuss about the results and discussion; The summary of this research is explained in section 5. 

 

2. Related work 

A few recent studies related to English grammar EDC are reviewed in this section, 

In 2022, Hu et al. optimized neural network-based grammar correction, reducing English grammar 

errors. Their work integrates grammar correction requirements with a neural network algorithm, 

examining feature impacts on article error correction and focusing on term vector structures. In 

2022, Zhang proposed a novel approach using a Seq2Seq model and feedback filtering to correct 

English grammar errors. The method combines a Seq2Seq model with attention and a response 

filtering model, enhancing both tolerance and accuracy in grammar error correction. 

In 2022, He et al. showcased an ML-based grammar error detection system for English 

composition. The approach incorporates an ML error-reducing module and a multilayer rule error-

reducing module, providing swift and objective feedback to enhance students' awareness of 

grammatical errors in English study. In 2021, Wu and Pan suggested an English grammar error 

finding depending on the LSTM-CRF ML type to notice and examine English grammar. Afterwards, 

a Neural Network (NN) approach and prediction model were used to analyze and study English 

grammar. It also included a brief overview of the NN and deep learning algorithms' growth trends. 

In 2022, Wang et al. introduced DL research on identifying grammatical errors, addressing 

resource scarcity for English education through internet technology. The proposed approach 

evaluated verb, noun, article, and preposition components using various models. In 2023, Zhang 

et al. proposed a model for English grammatical error correction, utilizing multiple hypotheses 

interaction and self-attention mechanisms to assess quality.  A computational network for English 

grammar correction was proposed by Wu in 2022. Recurrent Neural Network (RNN) is summarized 

by this approach. The NN is more capable of fitting the data distribution. In 2022, Zeng proposed 

an intelligent English writing test using semantics and neural networks, addressing grammatical 

challenges through confusion sets like prepositions and articles. Sequence annotation with the 

help of the sequence is necessary for this procedure. In 2024, Li et al. devised a method to enhance 

the English composition system, reducing teacher workload and effectively correcting errors, 

though it doesn't detect syntax and grammar errors efficiently. In 2024, Al-Khalifa et al. created a 

neural machine translation to examine the error patterns and estimate the system in a parallel 

corpus of English–Arabic sentences. One of the issues is it cannot effectively detect the error in 

grammar. Table 1 displays the comparison of the existing methods. 
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Table 1: Comparison of related works 

Author name 

with reference 

Techniques Merits Limitations 

Hu et al. (2022)  Neural network The suggested method minimizes 

grammatical errors. 

Accuracy of the error 

correction is quite 

complex. 

Zhang et al. 

(2022) 

 Seq2seq model The seq2seq model increases the 

effectiveness of reducing grammar 

errors. 

It requires better 

model to achieve error 

correction efficiency. 

He and Maia 

Det al. (2021) 

Machine learning Error detection through the analysis 

and comparison of various 

algorithmic models. 

More English grammar 

rules are needed to 

improve grammar error 

correction. 

Wu and Pan et 

al. (2022) 

LSTM-CRF Improve the efficiency of grammar 

detection. 

Significant changes in 

the accuracy. 

Wang & Zhang 

et al. (2023) 

Deep learning  DL technology used to detect 

grammar error quickly and efficiently.  

Accuracy of the error 

correction is dropped 

low. 

Zhang (2022) Machine 

translation model 

self-attention 

mechanisms 

Errors detection through analysis and 

word generation. 

Effectiveness of error 

correction is complex. 

Wu et al. (2022) Computational 

Neural Network  

Neural network technologies are 

utilized to detect and correct college 

English grammar errors.  

The prediction of error 

is not deep enough 

and less improvement 

in error correction. 

Zeng et al. 

(2021) 

Neural network Grammatical faults in English writing 

is corrected by NN, it Detects 

Automatically and Correct (DAC) 

error in grammar. 

Noise occurred in 

decoding and 

overcorrection issues 

are arise.  

Li, et al. (2024) Improved Method Employed to lessen the workload of 

teachers and enhance the 

effectiveness of the English 

composition grading system. 

grammar errors and 

syntax errors cannot be 

effectively 

detected. 

Al-Khalifa, et al.  Neural machine 

translation 

It was used to evaluate the error 

patterns in state-of-the-art PLMs 

while translating from English to 

Arabic 

Detection of grammar 

error is quite complex 

 

The comparison in Table 1 demonstrates how inaccurately the current technique corrects and 

detects grammatical errors. 

Problem Statement 

The discussed methods faced limitations, notably in error rates affecting overall detection 

accuracy. While the current approach rectifies coronal and prepositional errors, it addresses a 

limited error range. Neural machine translation surpasses in handling long-distance 
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dependencies, enhancing EDC model performance, yet faces training complexity challenges. This 

research targets English grammatical error detection and correction, aiming to improve precision 

and reliability. The OGDED-PA model enhances correction accuracy using a dual encoder-decoder 

architecture, pyramid attention mechanisms, and a graph-based representation for advanced 

syntactic and semantic understanding. Overall, OGDED-PA innovates traditional grammatical error 

correction with its unique architecture and attention mechanisms. 

 

3. Proposed Methodology 

The introduced technique for identifying and fixing grammar errors in English. This technique is 

employed to identify and rectify grammatical errors in English. The block diagram for the 

proposed technique is shown in Figure 1. The synthetic dataset C4-200M is the source of the input 

data. An NLP-based preprocessing step is used to improve the input data quality. The most 

significant features are extracted by hybrid Squared root of Term Frequency Variants with Mean 

Semi absolute Deviation Factors (STFV-MSDF). Bi-LSTM-CRF is used for segmentation. IBCO is 

utilized to enhance the performance of GDED-PA. 

 

Figure 1: Work flow of introduced method 
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3.1 Pre-Processing 

This stage is essential within the grammatical error correction model. This initial phase involves 

the analysis and processing of corpus information to furnish foundational data for constructing 

subsequent models. At this stage, it is imperative to delineate the text tokenization, stop-words 

removal: phrase tagging sets, the Part-of-Speech (PoS) tagging set and the word stemming corpus 

information are utilized for phrase partition. Once these prerequisites are met, corpus pre-

processing ensues, encompassing tasks such as sentence and PoS tagging, word segmentation, 

counting the word frequency, and analyse the syntax (Zhang, 2022). Overall, pre-processing stage 

lays the foundation for subsequent modelling and analysis tasks in grammatical error correction. 

After preprocessing, features from the data are extracted by hybrid Squared root of Term 

Frequency Variants with Mean Semi absolute Deviation Factors (STFV-MSDF). 

3.2 STFV-MSDF based feature extraction 

The STFV-MSDF approach is utilized in this manuscript to extract the morphological features; this 

method takes into account the importance of words within a document relative to a larger corpus. 

When applied to English grammar EDC, STFV-MSDF helps the system understand the context of 

specific words within the text. Initially, normalized frequency term 𝑁𝐹𝑇(𝑇𝑗, 𝐷𝑖) (Murty et al., 2023) 

is computed in order to avoid biasing for lengthy documents by equation (1) 

𝑁𝐹𝑇(𝑇𝑗, 𝐷𝑖) =
𝑇𝐹(𝑇"𝑗,𝐷"𝑖)

∑ 𝑇𝐹(𝑇"𝑞,𝐷′𝑖)𝑇𝑤∈𝐷𝑖

      (1)  

where 𝑇𝐹(𝑇"𝑗, 𝐷"𝑖) signifies the occurrence number of terms 𝑇"𝑗  in document 𝐷"𝑖 , 𝑇"𝑞 represents 

the next term of document 𝐷"𝑖 . After that, the square root of the normalized Term Frequency (TF) 

is calculated to adjust the influence of excessively high term frequency in equation (2). 

𝑆𝑄_𝑁𝐹𝑇(𝑇𝑗, 𝐷𝑖) = 𝑆𝑅𝑇.
𝑇𝐹(𝑇"𝑗,𝐷"𝑖)

∑ 𝑇𝐹(𝑇"𝑞,𝐷"𝑖)𝑇𝑤∈𝐷𝑖

              (2) 

The mean of the square root of the normalized TF in each class, denoted as the class TF 

(𝐶𝑇𝐹(𝑇"𝑗, 𝐶"𝑘)) is computed by equation (3): 

    𝐶𝑇𝐹(𝑇"𝑗, 𝐶"𝑘) =
∑ 𝑆𝑄_𝑁𝐹𝑇(𝑇"𝑗,𝐷"𝑖)𝐼(𝐷"𝑖,𝐶"𝑘)𝑁

𝑖=1

𝑀𝑘
         (3) 

in which, 𝐼(𝐷"𝑖, 𝐶"𝑘) represents an indicator that determines whether the document 𝐷"𝑖 belongs 

to class 𝐶"𝑘 or not. 𝑀𝑘 indicates the total documents in class 𝐶"𝑘. The class TF of a term is utilized 

to assess the categorical data carried by the term at the TF level. Moreover, class term frequencies 

lack the capability to measure the discriminatory power of terms across classes. For evaluating the 

discrimination of terms, STFV-MSDF is developed for representing the semi mean absolute 

deviation among every class TF and a central reference point. The central reference point of the 

term 𝑇"𝑗 depending on TF, signified as 𝐶𝑇𝑡(𝑇"𝑗), is determined by the semi mean of class term 

frequencies. Hence, it is expressed in equation (4) as follows: 

𝐶𝑇𝑡(𝑇"𝑗) =
∑ 𝐶𝑇𝐹(𝑇"𝑗,𝐶"𝑘)ℎ

𝑘=1

ℎ
              (4) 

Finally, the developed STFV-MSDF score of  𝑇"𝑗 based on 𝐶"𝑘 is written in equation (5) as follows: 
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𝑆𝐴𝐷𝐹𝑡(𝑇"𝑗 , 𝐶"𝑘) =
1

𝑛
∑ |𝐶𝑇𝐹(𝑇"𝑗, 𝐶"𝑘) − 𝐶𝑇(𝑇"𝑗)|𝑛

𝑖=1        (5) 

where 𝑛 represents the total data points, 𝑆𝐴𝐷𝐹𝑡 represents the semi-absolute deviation factors 

and 𝐶𝑇 represents the class term. The morphological characteristics are extracted by applying 

equation (5). The data is sent to Bi-LSTM-CRF for the segmentation procedure after the features 

have been extracted. 

3.3 Bi-LSTM-CRF For Segmentation Process 

Following feature extraction, the Bi-LSTM-CRF facilitates word segmentation, excelling in 

identifying grammatical error boundaries. Its comprehensive process includes sentence 

segmentation, word frequency computation, syntactic analysis, and part-of-speech tagging. 

Pinpointing error locations ensures precise corrections, avoiding overcorrection or omissions. 

Highly effective, it addresses various grammar errors, like verb tense, spelling and subject-verb 

agreement, enhancing overall correction accuracy. Bi-LSTM-CRF is characterized by three 

specialized layers: (1) bidirectional LSTM neural network layer and (2) CRF tag decoder layer 

Bi-LSTM layer: The embeddings of all the context characters are grouped into a single vector as 

input of both forward and backward LSTM neural networks. The matrix of scores is obtained by 

sending the input into a series of hidden layers. 

CRF layer: In this, evaluation score is obtained by defining transition score with the score of 

matrices from the aforementioned method. Using the chain CRF modelling the input sequence 

and output label. The one with maximum evaluation score is the predicted label from system. 

• BI-LSTM-CRF 

Bi-LSTM and CRF systems are merged together to form this model. In this architecture, sentence-

level tag information is combined with past and forward information using two Bi-LSTM layers 

and a CRF layer. 

Next, consider the score matrix produced by the network, 𝑓𝜃([𝑋1
𝑇]). The network's scoring output 

with parameters θ for the phrase 𝑋1
𝑇 for the 𝑖𝑡ℎ tag, at 𝑡𝑡ℎ word is represented by the component 

[𝑓𝜃]𝑖,𝑡 the matrix. When a location shifts from the 𝑖𝑡ℎ and 𝑡𝑡ℎ position, the evolution score [𝑀]𝑖,𝑗 is 

displayed. The new network parameter is then �̃� = 𝜃⋂{[𝐴]𝑖,𝑗∀𝑖, 𝑗}. Equation (6) yields the scores 

of a sequence of labels 𝑖1
𝑇 and a track of [𝑋]1

𝑇.  

𝑆(𝑋1
𝑇 , [𝑖]1

𝑇 , �̃�) ∑ ([𝑀][𝑖]𝑡−1
[𝑖]𝑡 + [𝑓𝜃][𝑖]𝑡

, 𝑡)𝑇
𝑡=1        (6) 

where, [𝑀][𝑖]𝑡−1
 is determined as the score matrix of the transition scores from the (𝑡 − 1) and [𝑖]𝑡 

denotes the tag at time 𝑡 . To efficiently compute the algorithm, a program is used [𝑀]𝑖,𝑗 and 

optimal tag sequences for inference. The segmented data is sent to GDED-PA for error detection 

following the word segmentation procedure. 

3.4GDED-PA for English grammatical error correction and detection 

Following the word segmentation process, the GDED-PA method is used for the segmented data. 

To design a dual-encoder and dual-decoder structure named GDED-PA. 

Graph Dual Encoder and Decoder (GDED): The model's encoder consists of the context 

information encoder, utilizing the Attention mechanism for broader context focus, and the Graph 
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Convolution Layers (GCL) encoder. GCL encodes the source sentence bidirectionally, capturing 

comprehensive semantic information. Subsequent sections elaborate on these components. 

Context Encoder: Inspired by the transformer, the context information encoder resolves long-

distance dependency using the attention mechanism. Unlike fixed-size windows, it minimizes 

distance calculation, effectively processing lengthy sentences with nuanced semantic information. 

Structured like the transformer, it relies on pyramid attention for extracting essential contextual 

information, as illustrated in Figure 2. The bidirectional encoding by the graph autoencoder 

ensures comprehensive semantics of the source sentence. The dual decoder utilizes extensive 

contextual information for accurate predictions, addressing variable length issues. Pyramid 

attention and correlation extraction with the graph encoder refine the final target sequence. The 

input of the graph encoder contains 𝑀 sentences that is 𝑅 = 𝑅1 + 𝑅2 + 𝑅3. . . . . . 𝑅𝑀 . For the 

𝐿𝑡ℎsentence the number of tokens is |𝑅𝐿|, that is 𝑅𝐿 = 𝑅𝐿,1. . . . 𝑅𝐿,|𝑅𝐿|, assuming the probability of 

correcting the target is 𝑉𝐿 = 𝑣𝑙,1, . . . 𝑣𝑙,|𝑉𝐿|. In the model, a context information encoder structure 

is employed, and the representation of the hidden layer state is illustrated by equation (7). 

 

                                   (a)                                                                    (b) 

Figure 2: GDED-PA (a) structure of GDED-PA (b) Context information encoder structure. 

                                  𝐶𝑚 = 𝑡𝑟𝑎𝑛𝑠𝑒𝑛𝑐(𝐶𝑚−1)∀𝑚 ⊂ [1,2]    (7) 

where, 𝐶𝑚is hidden layer, 𝑡𝑟𝑎𝑛𝑠𝑒𝑛𝑐(𝐶𝑚−1) represents the transformer encoder state of the forward 

layer, 𝑚 is a variable denoting the layer index count within the context information encoder 

structure 

GCL: The GCL encoder is utilized in English grammatical error correction and detection to enhance 

contextual understanding. It refines the correction process by capturing intricate language 
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dependencies. The formal expression for the graph encoder, denoted as 𝑎0, is given by equation 

(8) 

                                       𝑎0(𝑌, 𝐵) = 𝐺𝐶2
(𝐺𝐶1

(𝑌, 𝐵), 𝐵)    (8) 

where, 𝑌is feature matrix, 𝐵 is the adjacency matrix, and 𝐺𝐶 is graph convolution. 

Pyramid attention: Pyramid attention is an attention mechanism that operates at multiple scales 

or levels. In encoder-decoder architecture, pyramid attention involves capturing information from 

different levels of abstraction or hierarchical representations are given in equation (9). 

  𝑥𝑖 =
1

𝜕(𝑦",𝐹)
∑ ∑ 𝜑"(𝑦𝑖 , 𝑢𝑗)𝑗∈𝐹𝑢∈𝐹 𝜃"(𝑢𝑗)             (9) 

where, F represents the feature pyramid,  𝜕 represents the scalar function, 𝑦" represents the input 

features, 𝜑" represents the pair-wise affinity between input features and pixel-wise features 

𝑦𝑖𝑎𝑛𝑑𝑢𝑗, 𝜃"is a feature transformation function, 𝑖𝑎𝑛𝑑𝑗are the index of input features and pixel-

wise features. 

Decoder: The GCL decoder, using graph-based convolutional layers, improves grammatical error 

correction by analysing linguistic structures, capturing contextual dependencies, and enhancing 

language correction model accuracy. The representation u aims to closely resemble the original 

matrix B, ensuring flexibility and efficiency in decoder selection. The inner product of u measures 

node similarity, indicating likely edges between highly similar nodes. The reconstructed matrix 𝐵′ 

is calculated by equation (10). 

                                            𝐵′ = 𝜎(𝑢, 𝑢𝑇)                                            (10) 

where, 𝑢 is the node representation obtained from the encoder, 𝑢𝑇 denotes the transpose of the 

vector 𝑢, 𝜎 represents the nonlinear function.  In decoding, pyramid attention is applied to the 

input, obtaining post-mask attention weights. The GCL encoder, context information encoder, and 

gating mechanism extract correlation details, generating the target sequence. Computational 

steps, detailed with a formula, include pyramid attention and a normalization layer in the decoder. 

Then the final output at time 𝑡 is contingent on the decoder's output before time𝑡 − 1, as depicted 

by equation (11). 

𝑂𝑢𝑡𝑝𝑢𝑡 =  𝜂𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝑙𝑎𝑦𝑒𝑟(𝑃𝑦𝑟𝑎𝑚𝑖𝑑  𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑀𝑡−1)                      (11) 

where 𝜂is represented as the weight parameter of attention, 𝑀𝑡−1 represents the input text with 

decoder time constant, equation (11) represents the classification output for classifying text and 

non-text data from the input text. While classifying the text data, some errors occur in the output 

that reduce the accuracy. To improve the accuracy, the weight parameter 𝜂 of the GDED-PA is 

improved with the support of IBCO.  

3.5Optimizing GDED-PA using Improved Border Collie Optimization 

In this section, the IBCO algorithm is used to improve GDED-PA accuracy. One of the new 

algorithms for enhancing GDED-PA accuracy is the IBCO (Sheng et al., 2023). Border Collies, highly 

active herding dogs, not only obediently follow commands but also showcase reasoning skills. 

Their herding techniques efficiently minimize node distances.  Figure 3 gives the IBCO flowchart 

and the Border Collie optimization procedure. 
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Step 1: Initialization: First the original variables of the IBCO is initialized for optimizing the weight 

parameters of GDED-PA in equation (12). 

𝑃𝑚,𝑚′′ = (𝑝𝑚
𝑙𝑜𝑤𝑝𝑚

𝑢𝑝𝑝
) + (𝑝𝑚′′

𝑛−3)            (12) 

where 𝑝𝑚
𝑙𝑜𝑤  𝑎𝑛𝑑 𝑝𝑚

𝑢𝑝𝑝
represents the upper and lower boundaries of 𝑚𝑡ℎ individuals, 𝑃𝑚,𝑚′′ 

indicates that the initialization of a variable in the context of the IBCO,  then  𝑝𝑚′′
𝑛−3 represents the 

𝑛 individuals for 3 dogs and one sheep of IBCO. 

Step 2: At Random Creation: Following that, the initialization process, the input parameters of 

IBCO are randomly generated. 

Step 3: Compute the Fitness function: The fitness function is used to derive the objective 

function in equation (13). 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = min ( 𝜂𝑃𝑦𝑟𝑎𝑚𝑖𝑑  𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑀𝑡−1))                                  (13) 

Step 4: Location searching of IBCO: Three dogs and three sheep's locations in IBCO are 

initialised using random variables. From one location in the field, they move to the farm. The 

factors of velocity, acceleration, and time govern the direction and distance travelled by dogs and 

sheep, which can be computed in equations (14) and (15), respectively. 

             𝑉′
𝑙𝑑,𝑟𝑡,𝑙𝑡(𝑡′′ + 1) = √𝑉′

𝑙𝑑,𝑟𝑡,𝑙𝑡(𝑡′′)22 × 𝐴𝑐𝑐𝑙𝑑,𝑟𝑡,𝑙𝑡
(𝑡′′) × 𝑃𝑜𝑠

′
𝑙𝑑,𝑟𝑡,𝑙𝑡

(𝑡′′)        (14) 

where, 𝑉′
𝑙𝑑,𝑟𝑡,𝑙𝑡(𝑡′′ + 1) is denoted as the speed of dogs at the time (𝑡′′ + 1),  𝐴𝑐𝑐𝑙𝑑,𝑟𝑡,𝑙𝑡

(𝑡′′) 

represents the acceleration of the main dog, right dog and left dog at time (𝑡′′) and 𝑃𝑜𝑠
′
𝑙𝑑,𝑟𝑡,𝑙𝑡

(𝑡′′) 

represents the location at time (𝑡′′).  

𝑉𝑠ℎ
′ (𝑡′′ + 1) = √𝑉𝑙𝑡(𝑡′′)2 + 2 × 𝐴𝑐𝑐𝑙𝑡

(𝑡′′) × 𝑃𝑜𝑠
′
𝑙𝑡

(𝑡′′)        (15) 

Where, 𝑉𝑠ℎ
′ (𝑡′′ + 1) represents the velocity sheep at time(𝑡′′ + 1), 𝐴𝑐𝑐𝑙𝑡

the acceleration of the left 

dog at time 𝑡′′, 𝑃𝑜𝑠
′
𝑙𝑡

represents the location of the left dog at time. 

Step 5: Updating the position of IBCO: The three dogs' movements control the exploring 

potential of the IBCO algorithm. Therefore, they are able to identify the most promising regions 

in the search space. The sheep's movements are directly influenced by the three dogs. Thus, they 

focus on devising more efficient methods of searching in dog-populated areas. The position 

updating of sheep and dog are calculated in below equations (16) and (17). 

𝑃𝑜𝑠
′
𝑙𝑑,𝑟𝑡,𝑙𝑡

= 𝑉′
𝑙𝑑,𝑟𝑡,𝑙𝑡(𝑡′′ + 1) × 𝑇𝑖𝑚𝑙𝑑,𝑙𝑡,𝑟𝑡(𝑡′′ + 1) +

1

2
𝐴𝑐𝑐𝑙𝑑,𝑟𝑡,𝑙𝑡

(𝑡′′ + 1) × 𝑇𝑖𝑚𝑙𝑑,𝑙𝑡,𝑟𝑡(𝑡′′ + 1)2   

(16) 

𝑃𝑜𝑠
′
𝑠

= 𝑉𝑠
′(𝑡′′ + 1) × 𝑇𝑖𝑚𝑠(𝑡′′ + 1) +

1

2
𝐴𝑐𝑐𝑠

(𝑡′′ + 1) × 𝑇𝑖𝑚𝑠(𝑡′′ + 1)2      (17) 

From equations (16) and (17), the distance among the nodes is decreased with the help of position 

updating IBCO, 𝑇𝑖𝑚𝑙𝑑,𝑙𝑡,𝑟𝑡(𝑡′′ + 1) represents time required for main dog, right dog and left dog 

at time (𝑡′′+1)   and 𝑇𝑖𝑚𝑠(𝑡" + 1) represents the time required by eyed sheep to move to position 

𝑃𝑜𝑠
′
𝑠
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Step 6: Termination: Here the IBCO is utilized to improve the weight parameter of GDED-PA to 

improve the accurateness. In this proposed method, the Detection of English Grammatical Error 

and Correction utilizing enhanced GDED-PA are established accurately. Thus, the rate of Recall, F-

Score, and Precision is enhanced. Until met the termination conditions, the algorithm repeats the 

steps 5 to step 3 till 𝑇 = 𝑇 + 1 is met.  

The C4-200M synthetic dataset serves as the initial source of input data. The quality of input data 

is improved by pre-processing using NLP. The most important features are extracted using a 

feature extraction technique based on STFV-MSDF. Bi-LSTM-CRF is utilized in segmentation. 

GDED-PA and IBCO are employed to develop the performance. Finally, the introduced technique 

enhances the precision and reliability of error detection, thereby elevating the overall effectiveness 

of the grammatical correction process. 

 

Figure 3: Flowchart for IBCO algorithm 
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4. Results and discussions 

In this section, OGDED-PA based English Grammatical EDC is discussed. The implementation 

process is done in PYTHON environment. The valuation metrics are accuracy, sensitivity, precision, 

specificity, and f0.5-score. And the OGDED-PA compared with current approaches such as Unifying 

the detection of Missing, Redundant, and Spelling Correction (UMR-Spell) (Yinghao Li et al., 2023), 

Template Grammatical Error Correction (TemplateGEC) (Tao Fang T et al., 2023) Multimodal 

Grammatical Error Correction (Multimodal GEC) (Qorib et al., 2023), Gammaticality scorer for RE-

ranking Corrections (GRECO) (Stahlberg & Kumar, 2021) and Sequence transduction as a 

sequence of Edits (Seq2Edits) (Li, 2024) respectively. 

4.1 Dataset Description 

This manuscript utilizes the C4_200M Synthetic Dataset (Jin, 2023), with 200M sentences. Training 

involves 80%, and 20% is for testing. The dataset, consisting of approximately 200 million web 

documents, is a substantial resource for NLP research and large-scale language model training. 

Exactly designed for grammatical error correction, it employs a tagged corruption model to 

intentionally introduce errors into initially clean sentences from C4. Table 2 presents C4_200M 

Dataset Statistics. 

Table 2: Statistics of C4_200M Dataset 

Description Values 

Duration of sentence (Minimum) 1 word 

Duration of sentence (Maximum) 7092 words 

Token count in sentences that are correct 8774798 

The quantity of tokens in incorrect sentences 8861928 

 

4.2 Comparison of performance of proposed OGDED-PA with existing methods using 

C4_200M Synthetic Dataset 

Figure 4 (a) displays the recall analysis of the proposed method. GRECO exhibits a commendable 

recall of 63.72%, signaling its efficacy in identifying alterations. Seq2Edits, with a recall of 40.6%, 

demonstrates a comparatively lower sensitivity to changes, detecting only 20% of the alterations. 

40% more changes than GRECO, promising effective grammatical error correction. 

The proposed OGDED-PA method boasts an impressive 99.2% recall and captures 40% more 

changes than GRECO. This suggests that OGDED-PA presents a promising solution for robust 

grammatical error correction and detection. Figure 4 (b) shows the F0.5 analysis of the proposed 

method. The proposed OGDED-PA method outperforms both, attaining an F0.5 percentage of 

99.35% and successfully identifying 40% more changes than GRECO. This highlights the efficacy 

of OGDED-PA in achieving a balance between precision and recall, making it a promising 

approach for accurate English grammatical error correction and detection. Figure 4 (c) shows the 

precision analysis of the proposed method. OGDED-PA excels with 99.3% precision, surpassing 

others by detection. 



Hema et al| Page 13 of 24 

 

 

Figure 4: (a) Recall (b) F0.5 and (c) Precision analysis 

4.3 Comparison of performance of introduced OGDED-PA with previous English grammar 

correction approaches  

Figure 5(a), reveals varying levels of precision across different approaches, where OGDED-PA 

stands out with the highest precision at 97%, whereas TemplateGEC exhibits the lowest precision 

at 68.8%. In comparison, UMR-Spell exhibits a precision of 72.2%, surpassing TemplateGEC but 

falling short of the precision achieved by Multimodal GEC and proposed OGDED-PA approaches. 

Figure 5(b) depicts the proposed method's recall analysis, demonstrating its effectiveness against 

existing English grammar error correction approaches. TemplateGEC has a 64.6% recall, and UMR-

Spell achieves 77.2%, surpassing TemplateGEC and Multimodal GEC, but falls short of the 

proposed OGDED-PA, which attains an impressive 98% recall. Figure 5(c) presents an analysis of 

the F0.5 score for the proposed method in English grammatical error correction and detection. 

Notably, the proposed approach consistently outperforms existing methods, achieving a superior 

F0.5 score of 96%. Comparatively, Multimodal GEC surpasses TemplateGEC but falls short of UMR-

Spell and the innovative proposed OGDED-PA method, which exhibits the greatest F0.5 score 

among all the approaches. 
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Figure 5: (a) Precision (b) Recall and (c) F0.5 analysis 

4.4 Comparison of performance of proposed OGDED-PA with Vanilla transformer 

The performance analysis comparison between the vanilla transformer and the introduced 

technique is displayed in Figure 6 (Rokbani et al., 2021). When compared to the vanilla 

transformer, the proposed technique achieves a greater precision value, according to the precision 

analysis. 

 

Figure 6: Comparison between vanilla transformer and proposed approach 
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The precision value of the vanilla transformer is measured at 71.11%, while the introduced method 

achieves a precision value of 97.36%. In terms of recall analysis, the introduced method 

outperforms the vanilla transformer with a higher recall value. The introduced method achieves a 

recall value of 98.24%, which is 18.68% higher than the recall value of the vanilla transformer. 

Furthermore, the F0.5 analysis demonstrates that the introduced method achieves a higher F0.5 than 

the vanilla transformer. This indicates that the introduced method balances recall and precision 

better. The F0.5 of the introduced method surpasses the vanilla transformer in terms of overall 

performance. 

 

Figure 7: Accuracy analysis of error correction 

In Figure 7, the error correction accuracy analysis of the proposed technique is depicted for several 

recall rates. At a recall rate of 10% and a training time of 700s, the error correction accuracy is 

measured at 70%. Increasing the recall rate to 20% and the training time to 890s, the error 

correction accuracy improves to 75%. At a recall rate of 30% and a training time of 1000s, the 

error correction accuracy reaches 80%. Further, at a recall rate of 40% and a training time of 1090s, 

the introduced method achieves an error correction accuracy of 85%. Notably, at a recall rate of 

60% and a training time of 1100s, the error correction accuracy significantly increases to 92%. 

These findings indicate that the introduced method demonstrates the highest error correction 

accuracy for different recall rates and varying training times. 

Figure 8 illustrates the convergence curve of IBCO alongside the convergence curves of other 

optimization algorithms such as ACO (Ant Colony Optimization) (Pozna et al., 2022), PSO (Particle 

Swarm Optimization (Bannò et al., 2024), and (WOA) Whale Optimization Algorithm (Sun L et al., 

2022). The analysis reveals that IBCO exhibits a significantly faster convergence speed than the 

other optimization methods.  Figure 9 (a) presents the precision analysis of the dataset used in 

the OGDED-PA, as well as a comparison with datasets utilized in another technique called Self-

Refinement (SR). The SR approach utilizes three different datasets: EFCamDAT (Bannò & 

Matassoni, 2024), BEA (Wang et al., 2023), and Lang 8 (Rothe et al., 2021). When using the 

EFCamDAT dataset alone, the precision of the SR method is quite low. However, combining 

EFCamDAT with BEA leads to a slight increase in precision. When all three datasets (EFCamDAT, 

BEA, and Lang 8) are combined, the SR method achieves a precision of 61.7%. In contrast, the C4-
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200M dataset applied in the introduced approach achieves a significantly higher precision of 

97.36%. This demonstrates the effectiveness of the C4-200M dataset in achieving higher precision 

for English grammatical EDC. 

 

Figure 8: IBCO's Convergence Curve 

  

Figure 9: Analysis of C4-200M dataset (a) Precision (b) Recall 

Figure 9 (b) illustrates the recall analysis of the dataset utilized in the introduced method. The SR 

approach using the EFCamDAT dataset achieves a lower recall value than the other approaches. 

However, when BEA is combined with EFCamDAT, the recall value of SR slightly increases to 38.0%. 

In contrast, the proposed technique achieves a recall of 98.24%, which is greater than the datasets 

used in the SR technique. This highlights the effectiveness of the dataset utilized in the introduced 

method for capturing and detecting grammatical errors. 

In Figure 10, the F0.5 analysis of the dataset used in the proposed technique is presented, 

showcasing the efficiency of the dataset in the proposed method. The SR-EFCamDAT dataset 

attains a lower F0.5 of 40.3%, which is inferior to all the other datasets. The combination of BEA 

and EF achieves an F0.5 of 54.5%, which is less than the BEA+EF+lang 8 and the dataset used in 

the proposed method. The BEA+EF+lang 8 dataset attains an F0.5 of 58.8%. Notably, the dataset 



Hema et al| Page 17 of 24 

 

applied in the introduced technique attains the highest F0.5 of 99.13% among all the datasets 

compared. This analysis demonstrates that the introduced approach outperforms other datasets 

in terms of F0.5, emphasizing its effectiveness in English grammatical error correction and 

detection. 

 

Figure 10: F0.5 analysis of C4-200M dataset 

 

Figure 11: Statistical graph depicting the experimental results. 

Figure 11 presents the statistical analysis for error types in both test and training data. These 

encompass errors in articles, subject-verb agreement, prepositions, names and various verb forms. 

The comprehensive set includes verb tense errors, possessive words, missing verbs, articles, 

agreement between subject and verb, plural nouns, singular nouns, and pronoun forms.  
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• Statistical analysis of preposition check results 

This research's preposition checking model focuses on extracting features related to 10 commonly 

used prepositions, addressing attachment information issues. Evaluation includes statistical 

testing on each preposition, as displayed in Table 3. 

Table 3. Statistical analysis for preposition check results 

 Preposition 

about by from at with of in for to on 

Number of PE found 16 9 9 10 8 15 8 12 13 12 

Total errors 16 10 10 13 10 18 10 14 17 15 

Correctly correct the PE 9 7 7 9 7 13 6 9 10 10 

Recall rate (%) 93.56 94.2 90.43 92 82 95 86 87.45 88.90 92 

Correct rate (%) 86.23 88.34 83.3 90 89 87 95 93 95.34 91 

 

• Statistical analysis of grammar check model for dataset outcomes 

The comprehensive outcomes of error correction derived from the statistical-based grammatical 

error correction model outlined in this study are presented in Table 2.  

Table 4. Statistical analysis of grammar check for dataset outcomes. 

Error type Quantity of 

machine 

findings 

Quantity of 

manual 

findings 

Number of 

alterations 

Correct rate 

(%) 

F0.5 score 

(%) 

Recall rate 

(%) 

AE 72 86 61 98.56 92.12 93.45 

PE 100 124 79 97.28 94.57 90.45 

FE 78 86 73 95.45 93.42 97.37 

CSAE 75 83 62 95.35 94.43 96.45 

VCE 67 80 55 94.5 94.23 93.28 

RE 77 87 64 94.32 90.23 95.66 

PoSE 78 92 73 96.43 90.56 93.24 

VFE 77 90 71 96.42 92.45 93.45 

AVE 65 81 54 95.26 99.23 96.25 

ISPE 81 91 59 96.34 99.56 98.23 

SVIE 75 86 57 92.33 95.54 99.26 

AV 75 89 63 97.43 95.23 98.56 

The errors in the dataset are Preposition Error (PE), Article Error (AE), Part-of-Speech Error (PoSE), 

Verb Form Error (VFE), Auxiliary Verb Error, Subject Verb Inconsistency Error (AVESVIE), 

Inconsistent Singular and Plural Errors (ISPE), Fragment Error (FE), Comparative Superlative 

Adjective Error (CSAE), Verb Collocation Errors (VCE), Repeat Error (RE) and Average Value(AV). 

While there remains considerable opportunity for enhancing the range and precision of error 

detection, the statistical-based grammatical error correction model has largely achieved its 

language-checking objectives. Furthermore, the final accuracy rate is comparatively high, 

underscoring its practical utility. Table 4 shows the Statistical analysis of grammar check model 

test data outcomes. 
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• Segmentation output 

Figures 12 (a, b) show the phrase segmentation output analysis. The approach takes into account 

dependencies preceding and following certain words, expanding beyond word-to-word 

relationships and encompasses noun and verb phrases. English text undergoes part-of-speech 

tagging during training, followed by phrase segmentation and syntax parse tree construction. This 

evaluation shows the system error correction accuracy and recall rates pre- and post-phrase 

segmentation to assess overall performance. 

 

(a) 

 

(b) 

Figure 12: Segmentation output (a) result before using phrase segmentation (b) result after using phrase 

segmentation 
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4.5. Ablation study 

The proposed method conducts an ablation study on English grammatical EDC system 

components, analyzing three network models. The Generalized Language Evaluation 

Understanding (GLEU) metric assesses their impact on overall performance across four models in 

the test set. The equations for calculating GLEU are given in equation (18), 

𝐺𝐿𝐸𝑈𝑆𝑐𝑜𝑟𝑒(𝐶𝑇, 𝑆𝑇, 𝑅𝑇) = 𝐵𝑄. 𝑒 (∑ 𝑋𝑚 𝑙𝑜𝑔[
𝑄𝑚

𝑆𝑚
⁄ ]𝑀

𝑚=1 )    (18) 

where,  𝐵𝑄 represents the brevity penalty, applied if the generated text is shorter than the 

reference text, mX Weights assigned to different n-grams, 𝑄𝑚 represents the number of n-grams 

in the generated text that match the reference text, 𝑆𝑚 Number of n-grams in the reference text,  

𝑆𝑇 is the source text, 𝑅𝑇 is the standard text, and 𝐶𝑇 represents the output text. The GLEU score 

considers both precision (matching n-grams) and recall (n-grams present in the reference). Table 

5 shows the proposed models’ ablation study. 

From Table 5, the proposed OGDED-PA model achieves the highest GLEU score of 0.6325. 

Comparing the GCL encoder and decoder, adding Pyramid attention slightly improves the GLEU 

score (0.4427 vs. 0.4312). This suggests that using attention mechanisms within the model helps 

identify grammatical errors more effectively. The OGDED-PA significantly improves the GLEU score 

(0.5797) compared to Pyramid attention alone. This indicates that the dual encoder-decoder 

architecture provides a significant advantage in identifying and correcting errors. The proposed 

OGDED-PA achieves the highest GLEU score (0.6325), further enhancing performance compared 

to the basic dual encoder-decoder. This suggests that the IBCO optimizations implemented in the 

proposed model provide additional benefits for accurate error detection and correction. Finally, 

the OGDED-PA model achieves superior performance in English grammatical error correction 

tasks. 

Table 5. Ablation study for introduced model 

Model  GLEU 

Graph Dual Encoder and Decoder (GDED) 0.4427 

Pyramid attention (PA) 0.4312 

GDED-PA 0.5797 

OGDED-PA (proposed) 0.6325 

 

5. Conclusion 

English grammar detection and correction using OGDED-PA has been successfully implemented 

in this research. The method is implemented in Python, leveraging its powerful platform for 

efficient execution. By incorporating IBCO, the introduced method achieves improved accuracy in 

error correction. Comparative analysis demonstrates the superiority of the OGDED-PA based on 

the sensitivity, specificity, accuracy, recall, precision and F0.5. Furthermore, the efficiency of 

OGDED-PA is evaluated against the vanilla transformer, where the former outperforms the latter. 

In the future, a large vocabulary set can be used to improve grammatical detection and correction. 

Additionally, incorporating the reinforcement learning agent into established writing tools for 

creating independent applications can broaden its practical usefulness. This seamless integration 
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of grammar error correction directly into the writing process enables users to receive real-time 

refinement and assistance, enhancing the overall writing experience. 
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